منابع مشابه
Nonnegative signed total Roman domination in graphs
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
متن کاملSigned total Italian k-domination in graphs
Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...
متن کاملSigned Roman k-domination in Digraphs
Let D be a finite and simple digraph with vertex set V (D) and arc set A(D). A signed Roman dominating function (SRDF) on the digraph D is a function f : V (D) → {−1, 1, 2} satisfying the conditions that (i) ∑ x∈N−[v] f(x) ≥ 1 for each v ∈ V (D), where N −[v] consists of v and all inner neighbors of v, and (ii) every vertex u for which f(u) = −1 has an inner neighbor v for which f(v) = 2. The w...
متن کاملTwin signed total Roman domatic numbers in digraphs
Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...
متن کاملRestricted domination in arc-colored digraphs
Let H = (V (H), A(H)) be a digraph possibly with loops and D = (V (D), A(D)) a digraph whose arcs are colored with the vertices of H (this is what we call an H-colored digraph); i.e. there exists a function c : A(D) → V (H); for an arc of D, f = (u, v) ∈ A(D), we call c(f) = c(u, v) the color of f . A directed walk (directed path) P = (u0, u1, . . . , un) in D will be called an H-walk (H-path) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2018
ISSN: 1232-9274
DOI: 10.7494/opmath.2018.38.6.779